If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2=7
We move all terms to the left:
3k^2-(7)=0
a = 3; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·3·(-7)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{21}}{2*3}=\frac{0-2\sqrt{21}}{6} =-\frac{2\sqrt{21}}{6} =-\frac{\sqrt{21}}{3} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{21}}{2*3}=\frac{0+2\sqrt{21}}{6} =\frac{2\sqrt{21}}{6} =\frac{\sqrt{21}}{3} $
| 9-5x=11x+14 | | -4v+4v=-3-2v | | -4v+4=-3-2v | | 3(2a+1)-a=4a+8 | | 3(2a+1)-a=2a+3 | | 7(x-1(=21 | | 5h-h^2=0 | | 7n+3=-11 | | -4=3+7x=7 | | 5×x-3=50 | | .25(10-4a)=6-a | | 11-3x=x+17 | | 4t^-25=0 | | 22=-4t-2 | | 2(14+t=-10 | | 60=12x-x^2 | | x^2+18x+7=8x-2 | | 7(x+4)-10=30x+20+4x-2 | | x+14=72/x | | 12x-x^2-60=0 | | (6x+15)=(3x+20)=(x+11) | | 180=7x-15+24x+9 | | x^2+4x-8=8x-3 | | -2x^2-3x+8=0 | | 2x+5/3=x-4/5 | | (2x^2-3x)/(2x^2-4)=2 | | 328n,n=3 | | 32.8x-4.2x=8.2x4-1/2 | | 2x2=x-9 | | 17-3(4n-5)=30-6n | | 33x-33=33×+25 | | 7x+8=10+5x |